1 2 3	Article title: Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association
5 4 5	Running title: Modeling plant-soil mycorrhizal feedbacks
5 6 7	Keywords: mycorrhizae, carbon cycling, plant-soil interactions, soil carbon, N-cycle feedbacks, forest productivity, biogeochemical model, biogeochemistry
8	
9	Authors:
10	Benjamin N. Sulman: Program in Atmospheric and Oceanic Sciences, Department of
11	Geosciences, Princeton University, Princeton, New Jersey, USA,
12	bsulman@princeton.edu
13	Edward R. Brzostek: Department of Biology, West Virginia University, Morgantown,
14	West Virginia, USA, erbrzostek@mail.wvu.edu
15	Chiara Medici: Princeton Environmental Institute, Princeton University, Princeton, New
16	Jersey, USA, chiaramed2@gmail.com
17	Elena Shevliakova: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New
18	Jersey, USA, elena.shevliakova@noaa.gov
19	Duncan N. L. Menge: Department of Ecology, Evolution, and Environmental Biology,
20	Columbia University, New York, New York, USA, dm2972@columbia.edu
21	Richard P. Phillips: Department of Biology, Indiana University, Bloomington, Indiana,
22 23	USA, rpp6@indiana.edu
24	Corresponding author: Benjamin Sulman: bsulman@princeton.edu. Phone: (608) 332-
25	0047. Fax: (609) 987-5063. Mail: 201 Forrestal Road, Princeton, NJ 08540, USA.
26	
27	Statement of Authorship: BNS conducted model simulations. BNS, RPP, and ERB
28	analyzed model results. ERB collected and analyzed field measurements, and RPP
29	contributed to conceptualization and design of observations. BNS, ERB, and CM wrote
30	model code, and ES and DM contributed to model design. BNS and ERB wrote the initial
31	manuscript text, and all coauthors contributed to revisions.
32	
33	Data accessibility: Field measurements used for model simulations are included as
34	supplementary material. Model code is archived on GitHub
35	(https://github.com/bsulman/FUN-CORPSE) and model output is archived on Figshare
36	(doi 10.6084/m9.figshare.5016383 and 10.6084/m9.figshare.5016377).
37	
38	Type of article: Letters
39	
40	Number of words:
41	Abstract: 150
42	Main text: 5018
43	Number of references: 45
44	Number of figures: 6
45	Number of tables: 0
16	Number of text boxes: 0

46 Number of text boxes: 0

47 Abstract:

49	Ecosystem carbon (C) balance is hypothesized to be sensitive to the mycorrhizal
50	strategies that plants use to acquire nutrients. To test this idea, we coupled an optimality-
51	based plant nitrogen (N) acquisition model with a microbe-focused soil organic matter
52	(SOM) model. The model accurately predicted rhizosphere processes and C-N dynamics
53	across a gradient of stands varying in their relative abundance of arbuscular mycorrhizal
54	(AM) and ectomycorrhizal (ECM) trees. When mycorrhizal dominance was switched -
55	ECM trees dominating plots previously occupied by AM trees, and vice versa - legacy
56	effects were apparent, with consequences for both C and N stocks in soil. Under elevated
57	productivity, ECM trees enhanced decomposition more than AM trees via microbial
58	priming of unprotected SOM. Collectively, our results show that ecosystem responses to
59	global change may hinge on the balance between rhizosphere priming and SOM
60	protection, and highlight the importance of dynamically linking plants and microbes in
61	terrestrial biosphere models.
62	

63 **1. Introduction**

64 Nutrient availability plays a central role in the degree to which ecosystems store carbon 65 (C), but there is substantial uncertainty about the importance of this effect under changing 66 climate and rising atmospheric CO₂ levels (Friedlingstein et al. 2006; Heimann & 67 Reichstein 2008). In terrestrial biosphere models (TBMs), land C sinks can exceed 68 independently-derived estimates of nitrogen (N) availability (Hungate et al. 2003; Wieder 69 et al. 2015), casting doubt on the ability of "C only" TBMs to project C cycle-climate 70 feedbacks. While more TBMs have begun to include N dynamics, most of these models 71 represent soil N availability independently from plant N acquisition strategies, and do not 72 consider the ability of plants to actively influence microbial communities and 73 biogeochemical cycles to meet their N demand (Finzi et al. 2015; Thomas et al. 2015). 74 Observations suggest that roots stimulate soil N cycling by releasing C into the 75 rhizosphere either as root exudates or as direct transfers to mycorrhizal fungi. This 76 accelerates soil organic matter (SOM) turnover by enhancing microbial growth and 77 extracellular enzyme production (Kuzyakov 2010; Phillips et al. 2011; Phillips et al. 78 2012). However, this ability of plants to accelerate SOM turnover remains largely absent 79 from TBMs, representing an important gap between our mechanistic and predictive 80 understanding of the terrestrial C sink. 81 82 There is emerging evidence that the mycorrhizal associations of plants in a given 83 community both determine and reflect ecosystem N cycling and related feedbacks to

84 global changes (Phillips *et al.* 2013; Lin *et al.* 2016; Terrer *et al.* 2016). Trees associating

85 with ECM fungi typically have leaf litter that decomposes slower than that of AM-

associated trees (Cornelissen et al. 2001; Midgley et al. 2015). Consequently, N cycling
rates, on average, are slower in ECM stands than AM stands (Lin et al. 2016). However,
these low rates of N cycling do not appear to limit ECM plants' ability to enhance their
growth in response to elevated CO ₂ . Across a global synthesis of over 80 elevated CO ₂
experiments, Terrer et al. (2016) found that when N was limiting, ECM plants were able
to achieve biomass gains under elevated CO ₂ that were not realized by AM plants.
Moreover, in forests, these biomass gains were facilitated not by increased N use
efficiency but by enhanced N uptake (e.g. Finzi et al. 2007; Drake et al. 2011; Zaehle et
al. 2014). These findings raise a critical question: If N cycling is slower in ECM soils,
how do ECM (but not AM) plants accelerate N uptake under elevated CO ₂ ?
One plausible explanation concerns interactions between priming effects on SOM cycling
and the dominant modes of SOM stabilization, both of which differ between ECM- and
AM-dominated forests. ECM fungi are thought to produce extracellular enzymes that
promote decomposition of N-bearing organic compounds, while AM fungi generally rely
on uptake of inorganic N (Read & Perez Moreno 2003, but see Pelletier and Zak, 2017).
Further, rapidly decomposing AM leaf and root litter may promote more physically
protected N accumulation given that rapid litter decay enhances the production of N-rich
microbial necromass that becomes stabilized on soil mineral surfaces (Cotrufo et al.
2013). By contrast, ECM litter decays more slowly, producing larger stocks of organic N
in forms that are energetically demanding to decompose but not physically protected, and
therefore more vulnerable to priming effects (Kuzyakov 2010). While both theory and
observations support the above framework (e.g. Phillips et al. 2013; Averill et al. 2014),

the relative roles of priming effects and physical protection in ecosystem responses to
global change remain unclear. Due to the complexity of these interactions, ecosystem
modeling is a key tool for examining these processes.

112

131

113 Here, we present a novel modeling framework that couples mycorrhizal-specific patterns 114 of C allocation and N demand with soil microbial decomposition and physico-chemical 115 stabilization of SOM. We coupled two state-of-the-art models that are currently 116 implemented in global scale TBMs: (1) the Fixation and Uptake of Nitrogen (FUN) 117 Model (Fisher et al. 2010; Brzostek et al. 2014b; Shi et al. 2016) and (2) the Carbon, 118 Organisms, Rhizosphere, and Protection in the Soil Environment (CORPSE) model 119 (Sulman et al. 2014). FUN predicts vegetation N demand and the resulting allocation of 120 C to N acquisition via mycorrhizae and root exudation. CORPSE predicts the formation 121 and decomposition of SOM, explicitly including microbial activity and physical 122 protection. We validated the coupled model, FUN-CORPSE, against measurements 123 across a gradient from AM-dominant to ECM-dominant forest stands in southern Indiana, 124 USA. We then used the model to address three major questions: (1) To what degree do 125 plant traits connected with different mycorrhizal associations interact with physical 126 protection and priming effects to determine patterns of SOM storage? (2) To what degree 127 do shifts in the dominant mycorrhizal association affect soil C and N dynamics? (3) To 128 what degree do differences in plant traits and soil properties between mycorrhizal types 129 affect ecosystem responses to increases in net primary productivity, such as those driven 130 by elevated CO₂?

132 We show that FUN-CORPSE accurately captures observed patterns of biogeochemical 133 cycling across the mycorrhizal gradient. Model simulations suggest that (1) ECM-134 associated stands store more SOM in chemically resistant pools while AM-dominated 135 stands store more SOM in physically protected pools; (2) physical protection of SOM 136 drives legacy effects of mycorrhizal dominance that can influence soil N availability and 137 C storage for decades; and (3) under increasing productivity (as expected from elevated 138 CO_2), ECM stands accelerate the mobilization of N from SOM to a greater extent than 139 AM stands. Collectively, these results highlight the tight couplings between plant traits, 140 modes of SOM stabilization, and the capacity of vegetation to accelerate SOM turnover. 141

142 **2. Methods**

143 **2.1. Nitrogen acquisition model**

144 We estimated plant N demand and rhizosphere C allocation using the Fixation and

145 Uptake of Nitrogen (FUN) model (Fisher et al. 2010; Brzostek et al. 2014b; Shi et al.

146 2016), running at daily resolution. See Appendix S1 in Supporting Information for a

147 detailed description, equations, and parameters. FUN calculates N necessary to support

148 plant growth using wood, root, and canopy biomass accrual and the C:N ratio of each

149 plant tissue. Total C allocation to N acquisition is calculated as:

$$150 \quad C_{acq} = N_{uptake} Cost_{acq} \tag{1}$$

where C_{acq} is total C allocated to N acquisition and $Cost_{acq}$ is the average C cost per unit N acquisition. Costs for root and mycorrhizal strategies depend inversely on root biomass

153 (*B_r*) and soil inorganic N (*N_{inorg}*) (Brzostek *et al.* 2014b):

154
$$Cost_x = \frac{k_{N,x}}{N_{inorg}} + \frac{k_{C,x}}{B_r}$$
(2)

where x is an individual strategy and $k_{N,x}$ and $k_{C,x}$ are parameters that vary by mycorrhizal

156 association. $Cost_{myco}$ in AM stands increases rapidly with decreases in N_{inorg} . Because 157 ECM fungi can extract N directly from organic matter rather than relying on inorganic 158 sources, $Cost_{myco}$ in ECM stands has a weaker dependence on N_{inorg} and a stronger 159 dependence on B_r . Retranslocation only occurs during autumn leaf senescence, and its 160 cost varies with leaf N. Symbiotic N fixation was negligible in our study sites. Total cost

161 is calculated using a resistance framework analogy:

155

162
$$\frac{1}{Cost_{acq}} = \frac{1}{Cost_{root}} + \frac{1}{Cost_{retrans}} + \frac{1}{Cost_{myco}}$$
(3)

163 and C is allocated among strategies based on their relative costs:

164 165 $C_x = \frac{C_{acq}}{Cost_x}$ (4) 166 where C_x is carbon allocated to strategy *x*. C_{myco} and C_{root} are transferred to the soil 167 model CORPSE, where their impacts on SOM cycling lead to a dynamic coupling 168 between plants and soil (Figure 1).

169 **2.2. Soil organic matter model**

170 Soil C and N cycling were simulated using a modified version of the Carbon, Organisms,

- 171 Rhizosphere, and Protection in the Soil Environment (CORPSE) model (Sulman et al.
- 172 2014), which simulates SOM decomposition with a focus on microbial activity and
- 173 physical protection. For this study, we added N pools and transformations to CORPSE.
- 174 See Appendix S1 for full equations, parameters, and details of the model. SOM is divided
- 175 into three chemical types, representing resistant, labile and microbial necromass

176 compounds. Decomposition rates depend explicitly on microbial biomass along with 177 temperature (*T*) and moisture (θ):

178
$$D_{C,i} = V_{max,i}(T) \cdot \left(\frac{\theta}{\theta_{sat}}\right)^3 \left(1 - \frac{\theta}{\theta_{sat}}\right)^{2.5} \cdot C_{U,i} \frac{C_M/C_{U,i}}{\frac{C_M}{C_{U,i}} + k_M}$$
(5)

179

180
$$D_{N,i} = V_{max,i}(T) \cdot \left(\frac{\theta}{\theta_{sat}}\right)^3 \left(1 - \frac{\theta}{\theta_{sat}}\right)^{2.5} \cdot N_{U,i} \frac{C_M/C_{U,i}}{\frac{C_M}{C_{U,i}} + k_M}$$
(6)
181

182 where *D* is the decomposition rate of organic C or N, $C_{U,i}$ and $N_{U,i}$ are unprotected C and 183 N pools of type *i*, and C_M is microbial biomass C. Microbial biomass grows through 184 SOM decomposition:

185
$$G_{M} = \begin{cases} \sum_{i} (\epsilon_{C,i} D_{C,i}) & , \Phi_{N} \ge -Imm_{max} \\ C:N_{M} \cdot (\sum_{i} (\epsilon_{N,i} D_{N,i}) + Imm_{max}) + R_{maint}, \Phi_{N} < -Imm_{max} \end{cases}$$
(7)

187 where G_M is microbial growth, $\epsilon_{C,i}$ and $\epsilon_{N,i}$ are C and N use efficiencies, R_{maint} is

188 maintenance respiration, Imm_{max} is maximum N immobilization rate, C:N_M is microbial

189 biomass C:N ratio, and Φ_N is net N balance of microbial growth, which determines

191
$$\Phi_N = \sum_i (\epsilon_{N,i} D_{N,i}) - (\sum_i (\epsilon_{C,i} D_{C,i}) - R_{maint}) / \text{C:N}_M$$
192 (8)

193 Net N mineralization or immobilization during microbial SOM uptake is therefore

194 determined by the C:N ratio of SOM taken up by microbes compared to microbial

195 biomass C:N. If there is insufficient N to support microbial growth, excess C is converted

- to CO₂ as overflow respiration (Schimel & Weintraub 2003). N mineralization also
- 197 occurs during decomposition and microbial biomass turnover. *N*_{inorg} is simulated as a
- 198 single pool, without distinguishing between ammonium and nitrate, and nitrification is
- 199 not simulated. Labile SOM, which has high ϵ_c and V_{max} values, drives priming effects by

promoting microbial growth and thereby accelerating decomposition. The model
represents physically protected SOM as a separate set of pools that contains the same
three chemical types of SOM and is inaccessible to microbial decomposition. SOM is
converted from unprotected to protected forms at different fixed rates depending on
chemical class, with microbial necromass having the fastest protection rate:

$$205 \qquad \frac{dC_{P,i}}{dt} = C_{U,i} \cdot \gamma_i - \frac{C_{P,i}}{\tau_P}$$

$$206 \qquad (8)$$

$$207 \qquad \frac{dN_{P,i}}{dt} = N_{U,i} \cdot \gamma_i - \frac{N_{P,i}}{\tau_P}$$

$$(9)$$

209 where $C_{P,i}$ and $N_{P,i}$ are protected C and N, respectively and γ_i and τ_P are parameters.

Because litter with a higher labile content produces more microbial biomass and eventual
necromass production, it drives faster protected C formation compared to slower-cycling
litter.

213

214 Our model configuration divides organic matter pools among three compartments,

215 representing the litter layer, rhizosphere, and bulk soil. Each compartment contains its

own microbial biomass and SOM pools (although the litter layer does not contain

217 protected SOM), allowing the model to simulate contrasts in microbial activity among

218 compartments. Leaf litter is added to the litter layer, while root litter is divided between

the rhizosphere and bulk soil based on rhizosphere size. Croot calculated by the FUN

220 model is assumed to be equivalent to root exudation and added to the rhizosphere as

labile C. *C_{mvco}* is divided between the rhizosphere and bulk soil, reflecting the ability of

222 mycorrhizal hyphae to forage outside the rhizosphere. These labile C subsidies stimulate

223 microbial growth, increasing SOM decomposition rates but also increasing microbial N

demand. As a result, they can increase N mineralization or immobilization, depending onconditions.

- 226 **2.3. Empirical input and validation data**
- 227

228 We ran the model using data collected during the 2013 growing season across 45 forested 229 plots that spanned a mycorrhizal gradient in southern Indiana, USA. The plots were 230 located at one of three sites: Morgan Monroe State Forest (MMSF; 39°19.37'N, 231 86°24.8'W), Lilly Dickey Woods (LDW; 39°14.58'N, 86°12.58'W), and Griffey Woods 232 (GW; 39°11.9'N, 86°30.76'W), each of which contains a diverse mixture of AM and 233 ECM trees. Fifteen 12m x 12m plots were established at each site to cover a range in 234 basal area fraction from 100% AM dominated to 100% ECM dominated (Table S3). 235 Dominant ECM trees included American beech (Fagus grandifolia Ehrh.), northern red 236 oak (Quercus rubra L.), white oak (Quercus alba L.), black oak (Quercus velutina Lam.), 237 and various hickories (Carva spp.). Dominant AM trees included sugar maple (Acer 238 saccharum Marsh.), tulip poplar (Liriodendron tulipifera L.), white ash (Fraxinus 239 Americana L.), black walnut (Juglans nigra L.), black cherry (Prunus serotina Ehrh.) and 240 sassafras (Sassafras albidum Nutt.) (Cheeke et al. 2017). All three sites are located within 241 approximately 40km of each other and have similar climate and topography. However, 242 stand age of LDW is more than 150 years while stand ages of MMSF and GW are 243 approximately 80-90 years.

244

We measured annual wood production in each plot using dendrometer bands applied to every tree greater than 10cm diameter at breast height (DBH). Annual changes in 247 diameter were converted to biomass increments using allometric equations (Brzostek et 248 al. 2014a). Leaf litter was collected in each plot, separated by species into ECM and AM 249 fractions, dried, weighed, and analyzed for %C and %N. Leaf area index (LAI) in each 250 plot was measured at the peak of the growing season using a LAI-2000 system (LI-COR 251 Inc., Lincoln, NE, USA). Canopy leaf %N was measured using foliar samples collected from the top of the canopy and multiplied by LAI to estimate total foliar N on a g m⁻² 252 253 basis. %C and %N of wood were estimated using samples from a nearby site at Moore's 254 Creek, IN for the eight most common tree species. All %C and %N analyses were made 255 using a CN elemental analyzer on oven-dried samples (Costech Analytical, Valencia, CA, 256 USA).

257

258 Soils were sampled to a depth of 15 cm four times during the 2013 growing season (May, 259 June, August, October). Fine roots (less than 2mm in diameter) were picked from each 260 soil sample, weighed, and analyzed for %C and %N in the same manner as aboveground 261 tissues. We assumed a one-year fine root turnover time for both AM and ECM trees 262 (McCormack et al. 2014). Consequently, annual fine root production equaled mean root 263 biomass over the four sampling dates. Soil N mineralization was measured using three-264 week aerobic lab incubations that measured the increase in NH₄⁺ and NO₃⁻ in incubated 265 samples vs. an initial sample. We used previously published measurements of root 266 exudation from AM and ECM roots at GW (Yin et al. 2014) and morphology data for 267 AM and ECM temperate tree species (Comas & Eissenstat 2009; McCormack et al. 268 2014) to estimate root exudation rates for each plot. We multiplied the mean exudation 269 rate for each mycorrhizal association (mg C g fine root⁻¹ day⁻¹) by total AM or ECM fine root length in each plot. We assumed that exudation occurred only during the period when the canopy remained green. The root morphology and biomass measurements were also used to estimate the size of the rhizosphere for each plot, assuming that roots are cylindrical and that the rhizosphere extends 1mm from the root surface (Meier *et al.* 2014; Finzi *et al.* 2015). Measurements of C and N mineralization in the rhizosphere compared to bulk soil from Yin *et al.* (2014) were used for comparison with simulations.

276

277 Annual data were converted to daily estimates for driving model simulations using 278 phenological data previously collected at MMSF. Weekly LAI and greenness data from 279 MMSF were used to control the timing of C allocation to leaves as well as the timing of 280 litter fall (Dragoni et al. 2011). Wood production phenology was derived from weekly 281 measurements of DBH at MMSF (Brzostek et al. 2014a). Root phenology was estimated 282 using weekly measurements of root biomass at MMSF during the 2005 growing season (CA Wayson, unpublished data). Each phenological time series was fit with a 2nd order 283 284 polynomial using the curve-fitting tool in Matlab and normalized between zero and one. 285 We then multiplied the annual biomass growth for each component (roots, leaves, and 286 wood) by the first derivative of its phenological time series to calculate daily changes.

287

288 **2.4. Model calibration, validation, and experimental setup**

289

Along with the daily plant C and N time series described above, we drove the model

using observed soil temperature and moisture from the MMSF Ameriflux tower from

292 2013. Simulations received atmospheric deposition at a constant rate of 6 kg N ha⁻¹ year⁻¹

293	based on typical rates observed in the region. Model parameters were based on previously
294	published values where possible (Brzostek et al. 2014b; Sulman et al. 2014). Some
295	recalibration of parameters relative to previously published values was required because
296	explicitly simulating the soil N cycle changed decomposition rates and N availability
297	relative to previously published FUN and CORPSE simulations. Parameters were
298	adjusted to match observed mean SOM stocks and N mineralization rates. Simulations
299	were initialized by running the model with looped meteorology and litter inputs until soil
300	pools reached approximate steady state.
301	
302	Plots were divided into AM and ECM components using the relative basal areas of AM
303	and ECM trees in each plot, with tissue C:N for each mycorrhizal association based on
304	site measurements. Based on known differences in litter qualities, AM litter had a higher
305	initial labile C fraction (30%) than ECM litter (10%). Leaf litter C:N ratios were
306	determined by the FUN model using simulated retranslocation.
307	
308	Experimental simulations included the following: (1) control simulations, in which model
309	parameters reflected the spinup conditions; (2) reversed mycorrhizal association
310	simulations, in which plant and microbial C:N ratios, FUN cost parameters, and litter
311	decomposition properties were reversed to simulate vegetation growing on soil that had
312	developed under the opposite mycorrhizal association; and (3) elevated productivity
313	simulations, in which plant N demand and litter production were increased by 20%. Each
314	set of simulations included one version in which C_{root} and C_{myco} were added to the soil,
315	and one in which these transfers were ignored. This allowed us to directly assess the

316	impacts of microbial subsidies on SOM cycling and N mineralization. Note that because
317	NPP was prescribed based on measurements, litter production was not limited by N
318	availability. To separate the effects of coupled plant-microbial interactions from
319	increased litter inputs, different versions of the elevated productivity simulations were
320	conducted in which C_{root} and C_{myco} were either prescribed using values from the control
321	simulation or increased as calculated by the FUN model based on the increased N
322	demand. Elevated productivity simulations were integrated for seven years and then
323	averaged over the next two years for comparison with control simulations.

324 **3. Results**

325 3.1. Model performance relative to observations

327 The model accurately reproduced variations in root exudation across the mycorrhizal 328 gradient, although it slightly overestimated the flux in AM-dominant plots and 329 underestimated it in ECM-dominant plots (Fig. 2a). Exudation increased with increasing plot ECM fraction, from 12 gC m⁻² year⁻¹ in AM-dominant plots to near 30 gC m⁻² year⁻¹ 330 331 in ECM-dominant plots. Root exudation stimulated C and N mineralization in the 332 rhizosphere via increases in microbial biomass growth and turnover (Figure 2b). The 333 modeled responses were somewhat smaller in magnitude than the observed responses, but 334 the general pattern matched observations, with ECM-dominant plots experiencing 335 stronger rhizosphere stimulation of both C and N mineralization than AM-dominant 336 plots. In addition, modeled and observed values had similar ratios between C and N 337 mineralization (Figure 2b).

339 SOM stocks and N cycling varied strongly across the mycorrhizal gradient (Figure 3). N 340 mineralization (Fig. 3g), protected soil C and N (Fig. 3c,f), soil C turnover (Fig. 3h), and 341 microbial biomass (Fig. 3i) all decreased across the gradient from AM to ECM 342 dominance. By contrast, greater ECM dominance drove increases in unprotected C and N 343 (Fig. 3b,e). Total C was higher in ECM plots (Fig. 3a) while total N was higher in AM 344 plots (Fig. 3d), reflecting the low C:N ratio of protected SOM and the high proportion of 345 total N stored in protected pools. We quantified the impact of microbial subsidies by 346 conducting paired simulations where FUN-determined rhizosphere C transfers were 347 either added to soil or ignored. These simulations were compared after being integrated 348 for four years. Microbial subsidies reduced total soil C and N stocks, with the greatest 349 losses occurring in ECM-dominant plots (Fig. 3a,d). These reductions were driven by 350 losses of unprotected SOM, which were greatest in ECM-dominant plots (Fig. 3b). 351 Microbial subsidies slightly increased protected C and N stocks. However, changes in 352 protected SOM were small compared to changes in unprotected SOM. Microbial 353 subsidies increased N mineralization rates across the gradient (Fig. 3g), with the strongest 354 effects occurring in ECM-dominant plots. The increases in N mineralization were 355 matched by increases in C turnover rate (Fig. 3h) driven by enhanced microbial biomass 356 (Fig. 3i). 357

358 Because microbial subsidies accelerated both C and N mineralization, increases in N

359 availability were accompanied by losses of SOC. The ratio of SOC loss to N

360 mineralization varied across the gradient from 14 gC gN⁻¹ in AM-dominant plots to 28
361 gC gN⁻¹ in ECM-dominant plots (Figure 4).

362

363 **3.2. Responses to change in dominant mycorrhizal associations**

364

365 To assess couplings between vegetation and soils, we reversed mycorrhizal associations 366 across the gradient and simulated how soils changed over time (Figure 5). Unprotected C 367 and N stocks moved relatively quickly toward the values associated with the newly 368 dominant vegetation, although AM soils with ECM vegetation had lower stocks than 369 unmodified ECM plots after 50 years (Fig. 5b,e). By contrast, protected C and N stocks 370 changed more slowly (Fig. 5c,f). Total C stocks overshot unmodified values, with AM 371 soils colonized by ECM vegetation eventually accumulating more C than ECM soils with 372 matched vegetation and stocks in ECM soils colonized by AM vegetation declining 373 below those of AM soils with matched vegetation (Fig. 5a). Total N changed only 374 slightly, with stocks in ECM soils colonized by AM vegetation slightly increasing 375 relative to those of ECM soils with matching vegetation, and stocks in AM soils 376 colonized by ECM vegetation slightly declining relative to AM soils with matching 377 vegetation (Fig. 5d). N mineralization changed rapidly, temporarily overshooting the 378 values associated with the dominant vegetation on matched soils (Fig. 5g). Soil C 379 turnover rate and microbial biomass changed rapidly in the first year and then evolved 380 more slowly over ensuing years (Fig. 5h,i). 381

3.3. Response to increased vegetation productivity

383

384	We modeled the impacts of increasing ecosystem productivity by conducting simulations
385	in which litter production, root turnover, and vegetation N demand were increased by
386	20% (Figure 6). This increased rhizosphere C allocation by approximately 14% in AM-
387	dominant plots and 19% in ECM-dominant plots (Fig. 6a,d). These increased microbial
388	subsidies stimulated N mineralization, with stronger effects occurring in ECM-dominant
389	plots. However, the N mineralization response was relatively flat with respect to stand
390	composition when ECM fraction was greater than approximately 40% (Fig 6b). Higher
391	microbial subsidies also stimulated SOM decomposition, depleting soil C relative to
392	simulations without increases in microbial subsidies. This effect was greater in ECM-
393	dominant plots than in AM-dominant plots (Fig. 6c,f).

394

395 **4. Discussion**

By integrating new theoretical understanding with empirical measurements of theprocesses that couple SOM to vegetation function, FUN-CORPSE represents a

398 significant advancement from current TBM model structures. Most existing model

399 frameworks represent plants and soils as distinct processes connected only by indirect

400 feedbacks related to litter inputs and soil N mineralization (e.g Zaehle et al. 2014). Here,

- 401 we show that by dynamically linking rhizosphere C allocation to soil microbial growth
- 402 and SOM cycling (Fig. 1), FUN-CORPSE accurately captures empirical differences
- 403 between AM- and ECM-dominant plots (Figs. 2, 3), illuminates the extent to which plant

influences on soil properties persist over time (Fig. 5), and provides a framework for
estimating the impacts of priming effects on ecosystem C balance (Figs. 4, 6).
Collectively, these results suggest that TBM simulations of temperate forests could be
improved by explicitly coupling plants with soil microbial dynamics and physical
protection processes.

409

410 A key strength of our simulations lies in the use of detailed plot-level data to

411 parameterize, force, and validate the model. FUN-CORPSE captured the greater observed

412 root exudation rates in ECM compared to AM rhizospheres (Fig. 2a), which drove greater

413 stimulation of rhizosphere C and N mineralization that was consistent with observations

414 (Fig. 2b). However, rhizosphere stimulation in model simulations was generally lower

than in observations. This underestimation could be due to uncertainty in laboratory-

416 based C and N mineralization measurements but may also reflect uncertainty in model

417 parameters and processes. Roots in the model are unable to forage into new unexploited

418 patches, a key priority for future model development (Cheng *et al.* 2014; Chen *et al.*

419 2016). There are also considerable uncertainties in our parameterization of microbial

420 traits (e.g., CUE, turnover rates, and stoichiometry). These uncertainties are not unique to

421 FUN-CORPSE, but reflect a critical need across recent microbial decomposition models

422 for more empirical data on how microbial traits vary across environmental gradients

423 (including gradients in mycorrhizal association). In addition, the model slightly

424 underestimated the difference in root exudation between AM-dominant and ECM-

425 dominant stands at the ends of the mycorrhizal gradient (Fig. 2a). As a result, the

426 differences in C and N pools and mycorrhizal effects across the gradient could have been

427	slightly underestimated. Finally, FUN-CORPSE is designed to predict plant-microbial
428	interactions in the upper soil layers (0-30cm). Thus, the model does not capture dynamics
429	in deeper soil layers, where greater physically protected SOM stocks in AM soils could
430	potentially outweigh the greater total soil C storage we predict in ECM soils.
431	
432	FUN-CORPSE predicted substantial differences in soil C and N stocks and their
433	responses to microbial subsidies between AM and ECM ecosystems. These differences
434	emerged from the model structure, which integrates current theoretical and empirical
435	evidence that mineral sorption and aggregation processes preferentially protect organic
436	compounds derived from microbial extracellular enzyme production and biomass
437	turnover (Cotrufo et al. 2013; Bingham & Cotrufo 2016). In AM plots, the lower C:N
438	ratio and higher labile content of litter drove faster decomposition and higher microbial
439	biomass production leading to the majority of SOM being physically protected (Fig.
440	3b,c). By contrast, the more chemically resistant ECM litter produced slower
441	decomposition and lower microbial biomass production, reducing the physically
442	protected proportion of SOM. The higher proportion of unprotected SOM in ECM plots
443	meant greater vulnerability to priming effects, so that rhizosphere C allocation
444	accelerated SOM turnover to a greater degree in ECM soils than in AM soils (Fig. 3).
445	Thus, the model suggests that differences in SOM properties and the strength of priming
446	effects between AM and ECM stands are due to interactions between litter chemistry and
447	the formation of physically protected SOM. These simulations assumed that soil
448	mineralogical properties did not vary between AM and ECM stands. For sites occurring
449	on different soils, variations in mineralogical factors such as clay content or reactive

450 mineral surface area could outweigh the effects of litter properties. Further investigation
451 into the relative effects of these litter and mineralogical factors could help refine our
452 understanding of these processes.

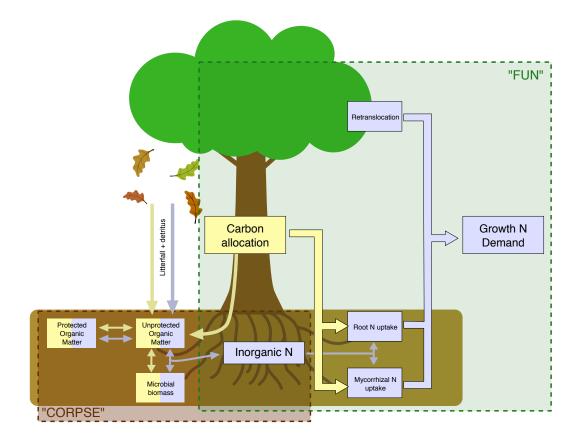
453

454 Simulations with reversed mycorrhizal associations revealed important ecological 455 processes at multiple time scales (Figure 5). AM vegetation growing on ECM soils had 456 lower rates of N mineralization than unmodified AM plots for the first few years until 457 litter deposition provided new N sources. This suggests that slower N cycling in ECM 458 stands could pose challenges for initial growth of AM vegetation by restricting N 459 availability for nitrophilic AM plants. This is consistent with the persistence of mono-460 dominant ECM forest stands in both temperate and tropical regions (e.g. Frelich et al. 461 1993; McGuire 2008). Over longer time scales, the stability of physically protected SOM 462 pools led to long-lasting differences in C stocks. Growth of ECM vegetation on 463 historically AM soils enhanced C stocks, while growth of AM vegetation on ECM soils 464 depleted soil C because a larger proportion was unprotected. Furthermore, N 465 mineralization was sensitive to soil history even after 50 years of changed mycorrhizal 466 associations. These results suggest that soil legacies of dominant plant communities could 467 drive long-term differences in ecosystem productivity and soil C storage. These results 468 are consistent with recent theoretical arguments that decomposition-prone litter can 469 enhance long-term SOM storage (Cotrufo et al. 2013) and contrast with suggestions that 470 soil C and N storage are independent of litter properties (Averill 2016). 471

472 FUN-CORPSE predicts that some forest ecosystems could sustain growth under elevated 473 CO₂ by enhancing N mineralization through priming effects (Figure 6). This response 474 varied with mycorrhizal association: ECM-dominant plots accelerated N mineralization 475 to a greater degree than AM-dominant plots. This result is consistent with observations 476 from elevated CO₂ experiments (Norby et al. 2010; Drake et al. 2011; Terrer et al. 2016). 477 Current TBMs generally assume either that plant growth is not N limited (by omitting the 478 N cycle) or that plant N availability is determined by soil decomposition processes that 479 cannot be accelerated by plant C expenditures. Our results suggest an intermediate 480 response: Increased NPP could accelerate N uptake beyond the rates supported by current 481 soil N mineralization if plants stimulated SOM turnover via increased rhizosphere C 482 expenditures. However, these increases in N mineralization may not be sufficient to fully 483 support accelerated growth. The additional C cost incurred to fuel enhanced N uptake 484 (Brzostek et al. 2014b) would also reduce plant production below the levels predicted in 485 the absence of N limitation.

486

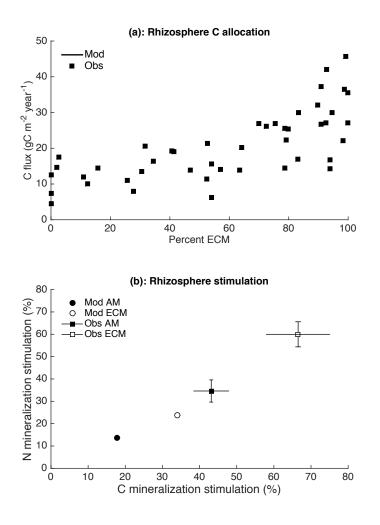
487 Whether priming increases or decreases ecosystem C storage depends on the balance 488 between soil C losses due to accelerated decomposition and vegetation C gains facilitated 489 by increased N mineralization (Figures 4 and 6). Our results suggest that this net balance 490 varies with mycorrhizal association, with ECM ecosystems losing more SOC per unit N 491 mineralization than AM ecosystems. This effect was driven by two factors. First, the 492 higher C:N ratios of litter and SOM in ECM stands meant that more C had to be 493 decomposed per unit of N released. Second, the larger magnitude of rhizosphere C 494 allocation in ECM stands drove higher N immobilization. Using the FUN-CORPSE

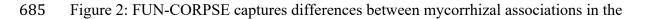

495	framework, we can estimate the critical C:N ratio of plant biomass accumulation at which
496	net ecosystem C flux would shift from a net loss to a net gain if all liberated N were used
497	to build biomass. Based on our simulations, this ratio has a lower limit of approximately
498	14 for AM stands and 28 for ECM stands. This relationship was consistent with Midgley
499	et al (2016), who observed a two-fold difference in the ratio of C mineralization to N
500	mineralization between AM and ECM plots. If the majority of additional plant growth
501	went to woody tissue with a typical C:N ratio of 300 or more, priming effects would
502	likely drive a net increase in total ecosystem C storage, although tree mortality or
503	depletion of soil N over time could eventually limit this increase.
504	
505	Our coupled plant-soil model FUN-CORPSE connects plant investment of C toward N
506	acquisition with the resulting impacts on soil microbial activity and SOM cycling. Our
507	results suggest that microbial subsidies can accelerate SOM mineralization, liberating N
508	to support plant growth at the expense of soil C losses. However, the capacity to
509	stimulate N availability varies with mycorrhizal association, with ECM-dominant forests
510	having a higher capacity than AM-dominant forests. Differences in rhizosphere C
511	allocation and litter properties between mycorrhizal associations also drive differences in
512	SOM properties that persist over long time periods. While simulating mycorrhizal
513	associations as separate plant functional types in TBMs presents parameterization
514	difficulties, emerging methods based on remote sensing (Fisher et al. 2016) or trait-based
515	approaches (van Bodegom et al. 2014) show promise for generating global estimates of
516	distributions of mycorrhizal associations and their traits. Thus, it is becoming
517	increasingly feasible to integrate mycorrhizal associations as controls on plant-microbial

518	interactions into earth system models, thereby addressing the critical omission of plant-
519	soil coupling in responses to global change (Warren et al. 2015; Brzostek et al. 2016;
520	Terrer <i>et al.</i> 2016).
521	
522	
523	Acknowledgments: This material is based upon work supported by the U.S. Department
524	of Energy Office of Biological and Environmental Research, Terrestrial Ecosystem
525	Science Program (DE-SC0016188), and the US National Science Foundation Ecosystem
526	Studies Program (grant #1153401). The field research was conducted at Indiana
527	University's Research and Teaching Preserve. Thanks to Z. Brown, T. Roman, and L.
528	Jacobs for field and data processing help. Thanks to Dr. C. Chou, Dr. A. Porporato, and
529	two anonymous reviewers for helpful comments on the manuscript. This report was
530	prepared by B. Sulman under award NA14OAR4320106 from the National Oceanic and
531	Atmospheric Administration, U.S. Department of Commerce. This study was also
532	supported by NOAA Climate Program Office's Atmospheric Chemistry, Carbon Cycle,
533	and Climate program, award #NA15OAR4310065. The statements, findings,
534	conclusions, and recommendations are those of the author(s) and do not necessarily
535	reflect the views of the National Oceanic and Atmospheric Administration or the U.S.
536	Department of Commerce.
537	
538 539 540	References:
541 542	Averill, C. (2016). Slowed decomposition in ectomycorrhizal ecosystems is independent of plant chemistry. <i>Soil Biology and Biochemistry</i> , 102, 52-54.

543	Averill, C., Turner, B.L. & Finzi, A.C. (2014). Mycorrhiza-mediated competition
544	between plants and decomposers drives soil carbon storage. <i>Nature</i> , 505, 543-545.
545	Bingham, A.H. & Cotrufo, M.F. (2016). Organic nitrogen storage in mineral soil:
546	Implications for policy and management. Science of the Total Environment, 551,
547	116-126.
548	Brzostek, E.R., Dragoni, D., Schmid, H.P., Rahman, A.F., Sims, D., Wayson, C.A. et al.
549	(2014a). Chronic water stress reduces tree growth and the carbon sink of
550	deciduous hardwood forests. Global Change Biol, 20, 2531-2539.
551	Brzostek, E.R., Fisher, J.B. & Phillips, R.P. (2014b). Modeling the carbon cost of plant
552	nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake
553	improve predictions of retranslocation. Journal of Geophysical Research-
554	<i>Biogeosciences</i> , 119, 1684-1697.
555	Brzostek, E.R., Rebel, K.T., Smith, K.R. & Phillips, R.P. (2016). Integrating mycorrhizae
556	into global scale models: a journey toward relevance in the earth's climate system.
557	In: Mycorrhizal mediation of soil: fertility, structure, and carbon storage (eds.
558	Johnson, NC, Gehring, C & Jansa, J). Elsevier Amsterdam, The Netherlands.
559	Cheeke, T.E., Phillips, R.P., Brzostek, E.R., Rosling, A., Bever, J.D. & Fransson, P.
560	(2017). Dominant mycorrhizal association of trees alters carbon and nutrient
561	cycling by selecting for microbial groups with distinct enzyme function. New
562	Phytol, 214, 432-442.
563	Chen, W., Koide, R.T., Adams, T.S., Deforest, J.L., Cheng, L. & Eissenstat, D.M. (2016).
564	Root morphology and mycorrhizal symbioses together shape nutrient foraging
565	strategies of temperate trees. Proc. Nat. Acad. Sci. USA, 113, 8741-8746.
566	Cheng, W., Parton, W.J., Gonzalez-Meler, M.A., Phillips, R., Asao, S., McNickle, G.G.
567	et al. (2014). Synthesis and modeling perspectives of rhizosphere priming. New
568	<i>Phytol</i> , 201, 31-44.
569	Comas, L.H. & Eissenstat, D.M. (2009). Patterns in root trait variation among 25 co-
570	existing North American forest species. New Phytol, 182, 919-928.
571	Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. (2001).
572	Carbon cycling traits of plant species are linked with mycorrhizal strategy.
573	<i>Oecologia</i> , 129, 611-619.
574	Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul, E.A. (2013). The
575	Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant
576	litter decomposition with soil organic matter stabilization: Do labile plant inputs
577	form stable soil organic matter? <i>Global Change Biol</i> , 19, 988-995.
578	Dragoni, D., Schmid, H.P., Wayson, C.A., Potter, H., Grimmond, C.S.B. & Randolph,
579	J.C. (2011). Evidence of increased net ecosystem productivity associated with a
580	longer vegetated season in a deciduous forest in south-central Indiana, USA.
581	Global Change Biol, 17, 886-897.
582	Drake, J.E., Gallet-Budynek, A., Hofmockel, K.S., Bernhardt, E.S., Billings, S.A.,
583	Jackson, R.B. et al. (2011). Increases in the flux of carbon belowground stimulate
584	nitrogen uptake and sustain the long-term enhancement of forest productivity
585	under elevated CO ₂ . Ecology Letters, 14, 349-357.
586	Finzi, A.C., Abramoff, R.Z., Spiller, K.S., Brzostek, E.R., Darby, B.A., Kramer, M.A. et
587	al. (2015). Rhizosphere processes are quantitatively important components of
588	terrestrial carbon and nutrient cycles. Global Change Biol, 21, 2082-2094.

589	Finzi, A.C., Norby, R.J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W.E. et
590	al. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support
591	higher rates of temperate forest productivity under elevated CO ₂ . Proc. Nat. Acad.
592	Sci. USA, 104, 14014-14019.
593	Fisher, J.B., Sitch, S., Malhi, Y., Fisher, R.A., Huntingford, C. & Tan, S.Y. (2010).
594	Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable
595	model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochem.
596	<i>Cycles</i> , 24, GB1014.
597	Fisher, J.B., Sweeney, S., Brzostek, E.R., Evans, T.P., Johnson, D.J., Myers, J.A. et al.
598	(2016). Tree-mycorrhizal associations detected remotely from canopy spectral
599	properties. Global Change Biol, 22, 2596-2607.
600	Frelich, L.E., Calcote, R.R., Davis, M.B. & Pastor, J. (1993). Patch Formation and
601	Maintenance in an Old-Growth Hemlock-Hardwood Forest. Ecology, 74, 513-
602	527.
603	Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V. et al. (2006).
604	Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model
605	Intercomparison. Journal of Climate, 19, 3337-3353.
606	Heimann, M. & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and
607	climate feedbacks. Nature, 451, 289-292.
608	Hungate, B.A., Dukes, J.S., Shaw, M.R., Luo, Y. & Field, C.B. (2003). Nitrogen and
609	climate change. Science, 302, 1512.
610	Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic
611	matter. Soil Biology and Biochemistry, 42, 1363-1371.
612	Lin, G., McCormack, M.L., Ma, C. & Guo, D. (2016). Similar below-ground carbon
613	cycling dynamics but contrasting modes of nitrogen cycling between arbuscular
614	mycorrhizal and ectomycorrhizal forests. New Phytol, 213, 1440-1451.
615	McCormack, M.L., Adams, T.S., Smithwick, E.A.H. & Eissenstat, D.M. (2014).
616	Variability in root production, phenology, and turnover rate among 12 temperate
617	tree species. <i>Ecology</i> , 95, 2224-2235.
618	McGuire, K.L. (2008). Ectomycorrhizal Associations Function to Maintain Tropical
619	Monodominance. In: Mycorrhizae: Sustainable Agriculture and Forestry (ed.
620	Siddiqui, ZA). Springer Science + Business Media B.V., pp. 287-302.
621	Meier, I.C., Pritchard, S.G., Brzostek, E.R., McCormack, M.L. & Phillips, R.P. (2014).
622	The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen
623	cycling in forests exposed to elevated CO ₂ . New Phytol, 205, 1164-1174.
624	Midgley, M.G., Brzostek, E. & Phillips, R.P. (2015). Decay rates of leaf litters from
625	arbuscular mycorrhizal trees are more sensitive to soil effects than litters from
626	ectomycorrhizal trees. Journal of Ecology, 103, 1454-1463.
627	Midgley, M. G., & Phillips, R. P. (2016). Resource stoichiometry and the biogeochemical
628	consequences of nitrogen deposition in a mixed deciduous forest. <i>Ecology</i> ,
629	97(12), 3369–3378, doi:10.1002/ecy.1595.
630	Norby, R.J., Warren, J.M., Iversen, C.M., Medlyn, B.E. & McMurtrie, R.E. (2010). CO ₂
631	enhancement of forest productivity constrained by limited nitrogen availability.
632	Proc. Nat. Acad. Sci. USA, 107, 19368-19373.

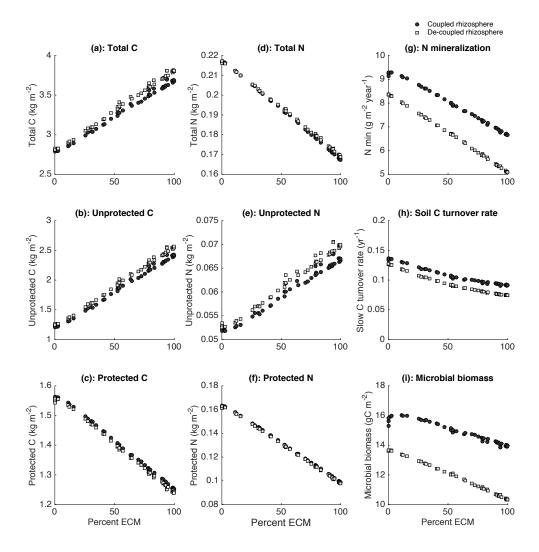

633 Pellitier, P. T., & Zak, D. R. (2017). Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New 634 635 Phytologist, 103, 495-6, doi:10.1111/nph.14598. 636 Phillips, R.P., Brzostek, E. & Midgley, M.G. (2013). The mycorrhizal-associated nutrient 637 economy: a new framework for predicting carbon-nutrient couplings in temperate 638 forests. New Phytol, 199, 41-51. 639 Phillips, R.P., Finzi, A.C. & Bernhardt, E.S. (2011). Enhanced root exudation induces 640 microbial feedbacks to N cycling in a pine forest under long-term CO₂ 641 fumigation. Ecology Letters, 14, 187-194. 642 Phillips, R.P., Meier, I.C., Bernhardt, E.S., Grandy, A.S., Wickings, K. & Finzi, A.C. 643 (2012). Roots and fungi accelerate carbon and nitrogen cycling in forests exposed 644 to elevated CO₂. Ecology Letters, 15, 1042-1049. 645 Read, D.J. & Perez Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems -646 a journey towards relevance? New Phytol, 157, 475-492. 647 Schimel, J.P. & Weintraub, M.N. (2003). The implications of exoenzyme activity on 648 microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology 649 and Biochemistry, 35, 549-563. 650 Shi, M., Fisher, J.B., Brzostek, E.R. & Phillips, R.P. (2016). Carbon cost of plant 651 nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen 652 cycle in the Community Land Model. Global Change Biol, 22, 1299-1314. 653 Sulman, B.N., Phillips, R.P., Oishi, A.C., Shevliakova, E. & Pacala, S.W. (2014). 654 Microbe-driven turnover offsets mineral-mediated storage of soil carbon under 655 elevated CO₂. Nature Climate change, 4, 1099-1102. 656 Terrer, C., Vicca, S., Hungate, B.A., Phillips, R.P. & Prentice, I.C. (2016). Mycorrhizal 657 association as a primary control of the CO₂ fertilization effect. Science, 353, 72-658 74. 659 Thomas, R.Q., Brookshire, E.N.J. & Gerber, S. (2015). Nitrogen limitation on land: how 660 can it occur in Earth system models? Global Change Biol, 21, 1777-1793. 661 van Bodegom, P.M., Douma, J.C. & Verheijen, L.M. (2014). A fully traits-based 662 approach to modeling global vegetation distribution. Proceedings of the National 663 Academy of Sciences, 111, 13733-13738. 664 Warren, J.M., Hanson, P.J., Iversen, C.M., Kumar, J., Walker, A.P. & Wullschleger, S.D. 665 (2015). Root structural and functional dynamics in terrestrial biosphere models -666 evaluation and recommendations. New Phytol, 205, 59-78. 667 Wieder, W.R., Cleveland, C.C., Smith, W.K. & Todd-Brown, K. (2015). Future 668 productivity and carbon storage limited by terrestrial nutrient availability. Nature 669 Geoscience, 8, 441-444. 670 Yin, H., Wheeler, E. & Phillips, R.P. (2014). Root-induced changes in nutrient cycling in 671 forests depend on exudation rates. Soil Biology and Biochemistry, 78, 213-221. 672 Zaehle, S., Medlyn, B.E., De Kauwe, M.G., Walker, A.P., Dietze, M.C., Hickler, T. et al. 673 (2014). Evaluation of 11 terrestrial carbon-nitrogen cycle models against 674 observations from two temperate Free-Air CO2 Enrichment studies. New Phytol, 675 202, 803-822. 676


679 Figure 1: Diagram of FUN-CORPSE model. Carbon and nitrogen stocks and flows are

680 color-coded, with carbon in yellow and nitrogen in purple. Different compartments (litter

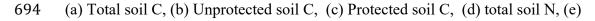
681 layer, rhizosphere, and bulk soil) are not shown.

684


amount of C transferred to the rhizosphere and its impacts on soil dynamics. (a):

687 Modeled vs. observed C allocation to the rhizosphere. (b): Modeled vs. observed

688 rhizosphere stimulation C and N mineralization rates. Values are percent differences


between the rhizosphere and bulk soil, where positive values are an enhancement in the

690 rhizosphere. Observed data are derived from Yin et al. (2015).

692 693

Figure 3: The impact of C transfers to the rhizosphere on soil dynamics after five years.

695 unprotected soil N, (f) protected soil N, (g) N mineralization rate, (h) Turnover rate of

- slow, unprotected soil C pool and (f) microbial biomass as a function of mycorrhizal
- association. Lighter symbols show simulations with no rhizosphere C deposition.

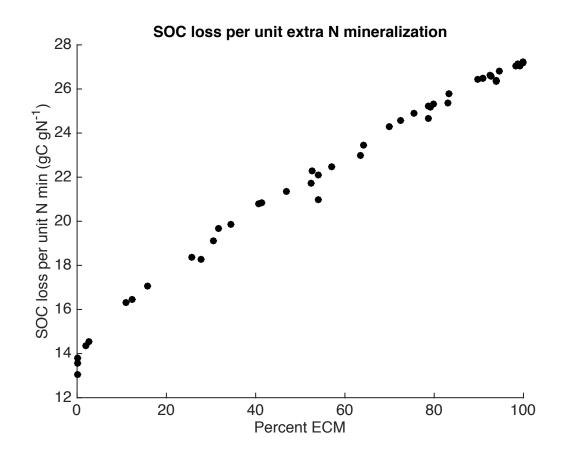
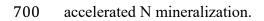
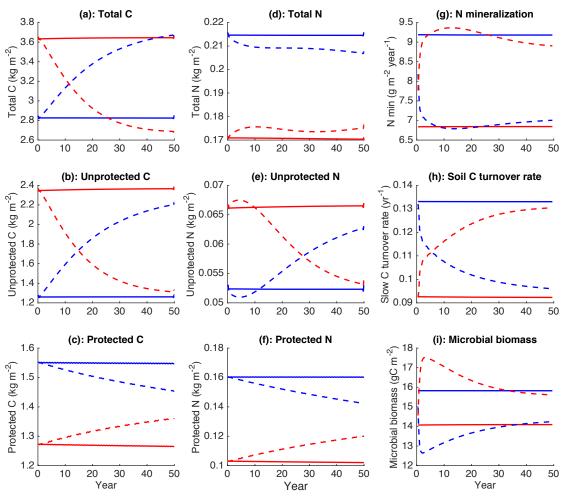




Figure 4: The amount of SOC loss due to accelerated decomposition per unit of

----- AM Veg, AM Soil ---- ECM Veg, ECM Soil --- ECM Veg, AM Soil --- AM Veg, ECM Soil

Figure 5: Reversing mycorrhizal associations drives changes in soil C and N cycling over
time. Red lines show soils with ECM-dominant history and blue lines show soils with
AM-dominant history. Solid lines have vegetation matched to prior soil history, and
dashed lines have reversed plant mycorrhizal associations relative to soil history.

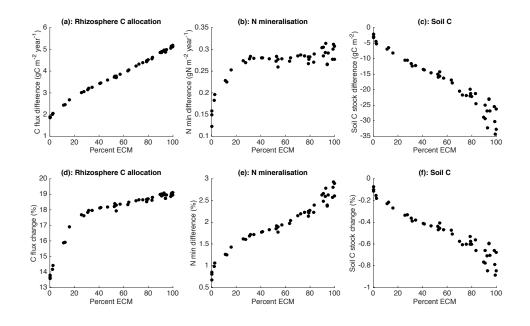


Figure 6: Responses to 20% increase in growth rates, as might be expected under

elevated CO₂. All plots show simulations with increased rhizosphere C allocation relative

to simulations with increased N demand and litter deposition but no change in

710 rhizosphere C allocation. Panels a-c show absolute changes, and panels d-f show percent

changes. a, d: Rhizosphere C allocation. b, e: Soil N mineralization rate. c, f: Soil C

712 stock.